New publication in Geochemistry, Geophysics, Geosystems

D" Reflection Polarities Inform Lowermost Mantle MineralogyThe TIMEleSS project has a new paper in September 2022! TIMEleSS PI C. Thomas is the first author of a publication entitled D” Reflection Polarities Inform Lowermost Mantle Mineralogy in the journal Geochemistry, Geophysics, Geosystems from the American Geophysical Union.

In this work, C. Thomas and co-authors L. J. Cobden, A. R. T. Jonkers investigate the polarities of seismic waves reflecting at structures in the Earth’s mantle and how they can be affected by seismic velocity changes at the interface. For the lowermost mantle reflector, a velocity increase generates a polarity that is the same for the main wave and the core-reflected wave. If, however, the percentage change of the velocity of the S wave increases at least three times as much as that of the P wave velocity (expressed as the R-value, the ratio dVs/dVp), the polarity of the D”-reflected PdP wave changes polarity, becoming opposite to both the main P wave and the reflection from the core-mantle boundary below it.

In the publication, they analyze sets of 1 million models with variable compositions of mantle material and mid-ocean ridge basalt and use an advanced statistical method to identify those combinations of minerals that produce large positive R-values. They distinguish four cases and find that previous explanations for three of these cases concur with our analysis. For regions where velocities decrease over the D” reflector, the analysis shows that enrichment with the lower-mantle mineral bridgmanite is responsible for the observed polarity behavior of P and S waves. This means that for regions such as large low-velocity anomalies in the lowermost mantle, primitive or bridgmanite-enriched material is the preferred explanation.

For more details, have a look at the full publication: C. Thomas, L. J. Cobden, A. R. T. Jonkers, D” Reflection Polarities Inform Lowermost Mantle Mineralogy, Geochemistry, Geophysics, Geosystems, 23, e2021GC010325 [doi: 10.1029/2021GC010325]

New publication in Geophysical Journal International

Mapping the edge of subducted slabs in the lower mantle beneath southern AsiaOn March 23rd, 2022, TIMEleSS student Federica Rochira, published a new paper in Geophysical Journal international: Mapping the edge of subducted slabs in the lower mantle beneath southern Asia.

In this work, Federica Rochira, Lina Schumacher, and Christine Thomas from the Westfälische Wilhelms-Universität, Münster, investigate the presence of seismic structures in the Earth’s mantle by searching for seismic signals, and in particular signals from the edges of subducted slabs. They rely on an original approach that uses was that travel off the great circle path direction and are reflected or scattered off structures in the lower mantle and focus on areas of current and past subduction beneath Eurasia by using events from Indonesia and Japan recorded at the broad-band stations in Germany, Morocco and Namibia. Applying seismic array techniques, they measure the direction and traveltime of the out-of-plane arrivals and backtrace them to their location of reflection/scattering.

The results of the work indicate that most of the backtraced reflectors are located beneath southern Asia and are found shallower than 1500 km depth. They correlate well with the edges of prominent high velocity anomalies in tomographic inversions beneath southern Asia, which have been interpreted as remnants of fossil slabs of the subduction of the Tethys Oceans. They also observe few reflectors deeper than 1600 km that are located away from subducting regions and their positions coincide with the eastern edge of the African low velocity anomaly.

These observations suggest that the presence of reflectors in the mid-lower mantle is not exclusively related to current or past subducting regions, but widespread throughout the mantle.

The full details are in the following publication: F. Rochira, L. Schumacher, C. Thomas, Mapping the edge of subducted slabs in the lower mantle beneath southern Asia, Geophysical Journal International, 230, 1239–1252 (2022) [doi: 10.1093/gji/ggac110]