New publication in Frontiers in Earth Science

Deformation of Polycrystalline MgO Up to 8.3 GPa and 1270 K: Microstructures, Dominant Slip-Systems, and Transition to Grain Boundary SlidingWe have a new publication! On May 9th, 2022, former TIMEleSS PhD student Estelle Ledoux published a new paper in Frontiers in Earth Science: Deformation of Polycrystalline MgO Up to 8.3 GPa and 1270 K: Microstructures, Dominant Slip-Systems, and Transition to Grain Boundary Sliding.

The work is a result of a collaboration between the Université de Lille and the University of Utah. We focus on polycrystalline periclase, the pure Mg end-member of the second-most abundant mineral in the Earth lower mantle, ferro-periclase, for which mechanical properties are important to understand flow and the dynamics of the Earth mantle.

we deform polycrystalline periclase at conditions ranging from 1.6 to 8.3 GPa and 875–1,270 K. We analyse the flow laws and microstructures of the recovered samples using electron microscopy and compare our observations with predictions from the literature. We identify a first mechanism for samples deformed at 1,270 K, attributed to a regime controlled by grain boundary sliding accommodated by diffusion, and characterized by a small grain size, an absence of texture, and no intracrystalline deformation. At 1,070 K and below, the deformation regime is controlled by dislocations. The samples show a more homogeneous grain size distribution, significant texture, and intracrystalline strains. In this regime, deformation is controlled by the ⟨110⟩{110} slip system and a combined ⟨110⟩{110} and ⟨110⟩{100} slip, depending on pressure and temperature.

Based on these results, we propose an updated deformation map for polycrystalline MgO at mantle conditions and discuss the implications for ferropericlase and seismic observations in the Earth’s lower mantle.

More details can be found in the open-access full reference of the study: E. E. Ledoux, F. Lin, L. Miyagi, A. Addad,  A. Fadel, D. Jacob, F. Béclin, and S. Merkel. Deformation of Polycrystalline MgO Up to 8.3 GPa and 1270 K: Microstructures, Dominant Slip-Systems, and Transition to Grain Boundary Sliding. Front. Earth Sci. 10, 849777 (2022) [doi: 10.3389/feart.2022.849777]