Publication in the European Journal of Mineralogy!

Publication in the European Journal of Mineralogy: Deformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K: implications for plastic deformation and transformation mechanismA new publication from a TIMEleSS student in the European Journal of Mineralogy : Deformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K: implications for plastic deformation and transformation mechanism.

Jeff Gay uses a resistively heated diamond anvil to study the plastic deformation and phase transformation mechanisms in NaCoF3. Under ambient pressure, NaCoF3. crystallizes in the perovskite structure, and later transforms to the post-perovskite. It is hence an excellent analogue to understand the physical properties of bridgmanite, the most abundant mineral on Earth, and dominant component of the Earth’s lower mantle between 660 and 2900 km depth.

These results from a collaboration between the Université de Lille, the University of Utah, University College London, and the PETRA III / DESY synchrotron source were published on 30 Sep 2021 in the European Journal of Mineralogy.

Full reference: J. P. Gay, L. Miyagi, S. Couper, C. Langrand, D. P. Dobson, H.-P. Liermann, S. Merkel, Deformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K: implications for plastic deformation and transformation mechanism, European Journal of Mineralogy, 33, 591–603 (2021), abstract [doi: 10.5194/ejm-33-591-2021].